Post-Classical Science

Movement: Post-Classical Science
Dates: c. 400 - 1543

In the Middle Ages the classical learning continued in three major linguistic cultures and civilizations: Greek (the Byzantine Empire), Arabic (the Islamic world), and Latin (Western Europe).

Byzantine Empire

Because of the collapse of the Western Roman Empire, the intellectual level in the western part of Europe declined in the 400s. In contrast, the Eastern Roman or Byzantine Empire resisted the barbarian attacks, and preserved and improved the learning.

While the Byzantine Empire still held learning centers such as Constantinople, Alexandria and Antioch, Western Europe's knowledge was concentrated in monasteries until the development of medieval universities in the 12th centuries. The curriculum of monastic schools included the study of the few available ancient texts and of new works on practical subjects like medicine and timekeeping.

In the sixth century in the Byzantine Empire, Isidore of Miletus compiled Archimedes' mathematical works in the Archimedes Palimpsest, where all Archimedes' mathematical contributions were collected and studied.

John Philoponus, another Byzantine scholar, was the first to question Aristotle's teaching of physics, introducing the theory of impetus. The theory of impetus was an auxiliary or secondary theory of Aristotelian dynamics, put forth initially to explain projectile motion against gravity. It is the intellectual precursor to the concepts of inertia, momentum and acceleration in classical mechanics. The works of John Philoponus inspired Galileo Galilei ten centuries later.

The first record of separating conjoined twins took place in the Byzantine Empire in the 900s when the surgeons tried to separate a dead body of a pair of conjoined twins. The result was partly successful as the other twin managed to live for three days. The next recorded case of separating conjoined twins was several centuries later, in 1600s Germany. 

During the Fall of Constantinople in 1453, a number of Greek scholars fled to North Italy in which they fueled the era later commonly known as the "Renaissance” as they brought with them a great deal of classical learning including an understanding of botany, medicine, and zoology. Byzantium also gave the West important inputs: John Philoponus' criticism of Aristotelian physics, and the works of Dioscorides. 

Islamic world

In the Middle East, Greek philosophy was able to find some support under the newly created Arab Empire. With the spread of Islam in the 7th and 8th centuries, a period of Muslim scholarship, known as the Islamic Golden Age, lasted until the 13th century. This scholarship was aided by several factors. The use of a single language, Arabic, allowed communication without need of a translator. Access to Greek texts from the Byzantine Empire, along with Indian sources of learning, provided Muslim scholars a knowledge base to build upon.

Scientific method began developing in the Muslim world, where significant progress in methodology was made, beginning with the experiments of Ibn al-Haytham (Alhazen) on optics from c. 1000, in his Book of Optics. The most important development of the scientific method was the use of experiments to distinguish between competing scientific theories set within a generally empirical orientation, which began among Muslim scientists. Ibn al-Haytham is also regarded as the father of optics, especially for his empirical proof of the intromission theory of light. Some have also described Ibn al-Haytham as the "first scientist" for his development of the modern scientific method.

In mathematics, the mathematician Muhammad ibn Musa al-Khwarizmi (c. 780–850) gave his name to the concept of the algorithm, while the term algebra is derived from al-jabr, the beginning of the title of one of his publications.[81] What is now known as Arabic numerals originally came from India, but Muslim mathematicians made several key refinements to the number system, such as the introduction of decimal point notation.

In astronomy, Al-Battani (c. 858–929) improved the measurements of Hipparchus, preserved in the translation of Ptolemy's Hè Megalè Syntaxis (The great treatise) translated as Almagest. Al-Battani also improved the precision of the measurement of the precession of the Earth's axis. The corrections made to the geocentric model by al-Battani, Ibn al-Haytham,[82] Averroes and the Maragha astronomers such as Nasir al-Din al-Tusi, Mo'ayyeduddin Urdi and Ibn al-Shatir are similar to Copernican heliocentric model.[83][84] Heliocentric theories may have also been discussed by several other Muslim astronomers such as Ja'far ibn Muhammad Abu Ma'shar al-Balkhi,[85] Abu-Rayhan Biruni, Abu Said al-Sijzi, Qutb al-Din al-Shirazi, and Najm al-Dīn al-Qazwīnī al-Kātibī.

Muslim chemists and alchemists played an important role in the foundation of modern chemistry. Scholars such as Will Durant and Fielding H. Garrison considered Muslim chemists to be the founders of chemistry. In particular, Jābir ibn Hayyān (died c. 806−816), is popularly considered to be "the father of chemistry". The works of Arabic scientists influenced Roger Bacon (who introduced the empirical method to Europe, strongly influenced by his reading of Persian writers), and later Isaac Newton. The scholar Al-Razi contributed to chemistry and medicine.

Ibn Sina (Avicenna, c. 980–1037) is regarded as the most influential philosopher of Islam. He pioneered the science of experimental medicine and was the first physician to conduct clinical trials. His two most notable works in medicine are the Kitāb al-shifāʾ ("Book of Healing") and The Canon of Medicine, both of which were used as standard medicinal texts in both the Muslim world and in Europe well into the 17th century. Amongst his many contributions are the discovery of the contagious nature of infectious diseases,[95] and the introduction of clinical pharmacology.

Scientists from the Islamic world include al-Farabi (polymath), Abu al-Qasim al-Zahrawi (pioneer of surgery),  Abū Rayhān al-Bīrūnī (pioneer of Indology,  geodesy and anthropology),[100] Nasīr al-Dīn al-Tūsī (polymath), and Ibn Khaldun (forerunner of social sciences  such as demography, cultural history, historiography,  philosophy of history and sociology),  among many others.

Islamic science began its decline in the 12th or 13th century, before the Renaissance in Europe, and due in part to the 11th–13th century Mongol conquests, during which libraries, observatories, hospitals and universities were destroyed.  The end of the Islamic Golden Age is marked by the destruction of the intellectual center of Baghdad, the capital of the Abbasid caliphate in 1258.

Western Europe

By the eleventh century, most of Europe had become Christian; stronger monarchies emerged; borders were restored; technological developments and agricultural innovations were made, increasing the food supply and population. Classical Greek texts were translated from Arabic and Greek into Latin, stimulating scientific discussion in Western Europe.

An intellectual revitalization of Western Europe started with the birth of medieval universities in the 12th century. Contact with the Byzantine Empire,[74] and with the Islamic world during the Reconquista and the Crusades, allowed Latin Europe access to scientific Greek and Arabic texts, including the works of Aristotle, Ptolemy, Isidore of Miletus, John Philoponus, Jābir ibn Hayyān, al-Khwarizmi, Alhazen, Avicenna, and Averroes. European scholars had access to the translation programs of Raymond of Toledo, who sponsored the 12th century Toledo School of Translators from Arabic to Latin. Later translators like Michael Scotus would learn Arabic in order to study these texts directly. The European universities aided materially in the translation and propagation of these texts and started a new infrastructure which was needed for scientific communities. In fact, European university put many works about the natural world and the study of nature at the center of its curriculum,  with the result that the "medieval university laid far greater emphasis on science than does its modern counterpart and descendent."

In classical antiquity, Greek and Roman taboos had meant that dissection was usually banned, but in the Middle Ages medical teachers and students at Bologna began to open human bodies, and Mondino de Luzzi (c. 1275–1326) produced the first known anatomy textbook based on human dissection.

As a result of the Pax Mongolica, Europeans, such as Marco Polo, began to venture further and further east. This led to the increased awareness of Indian and even Chinese culture and civilization within the European tradition. Technological advances were also made, such as the early flight of Eilmer of Malmesbury (who had studied Mathematics in 11th century England), and the metallurgical achievements of the Cistercian blast furnace at Laskill.

At the beginning of the 13th century, there were reasonably accurate Latin translations of the main works of almost all the intellectually crucial ancient authors, allowing a sound transfer of scientific ideas via both the universities and the monasteries. By then, the natural philosophy in these texts began to be extended by scholastics such as Robert Grosseteste, Roger Bacon, Albertus Magnus and Duns Scotus. Precursors of the modern scientific method, influenced by earlier contributions of the Islamic world, can be seen already in Grosseteste's emphasis on mathematics as a way to understand nature, and in the empirical approach admired by Bacon, particularly in his Opus Majus. Pierre Duhem's thesis is that Stephen Tempier - the Bishop of Paris - Condemnation of 1277 led to the study of medieval science as a serious discipline, "but no one in the field any longer endorses his view that modern science started in 1277". However, many scholars agree with Duhem's view that the mid-late Middle Ages saw important scientific developments.

The first half of the 14th century saw much important scientific work, largely within the framework of scholastic commentaries on Aristotle's scientific writings.[120] William of Ockham emphasised the principle of parsimony: natural philosophers should not postulate unnecessary entities, so that motion is not a distinct thing but is only the moving object and an intermediary "sensible species" is not needed to transmit an image of an object to the eye.[ Scholars such as Jean Buridan and Nicole Oresme started to reinterpret elements of Aristotle's mechanics. In particular, Buridan developed the theory that impetus was the cause of the motion of projectiles, which was a first step towards the modern concept of inertia. The Oxford Calculators began to mathematically analyze the kinematics of motion, making this analysis without considering the causes of motion.

In 1348, the Black Death and other disasters sealed a sudden end to philosophic and scientific development. Yet, the rediscovery of ancient texts was stimulated by the Fall of Constantinople in 1453, when many Byzantine scholars sought refuge in the West. Meanwhile, the introduction of printing was to have great effect on European society. The facilitated dissemination of the printed word democratized learning and allowed ideas such as algebra to propagate more rapidly. These developments paved the way for the Scientific Revolution, where scientific inquiry, halted at the start of the Black Death, resumed.

Our Mission

The History of Creativity is a visual encyclopaedia that allows you to time travel to any time and place in the past or present.